Machine Learning - Classification

CS102 Spring 2020

Classification

0001110111000011101 1100101010011001020

CS102

Data Tools and Techniques

- Basic Data Manipulation and Analysis Performing well-defined computations or asking well-defined questions ("queries")
- Data Mining Looking for patterns in data
- Machine Learning Using data to build models and make predictions
- Data Visualization Graphical depiction of data
- Data Collection and Preparation

Regression

Using data to build models and make predictions

- Supervised
- Training data, each example:
 - Set of predictor values "independent variables"
 - Numerical output value "dependent variable"
- Model is function from predictors to output
 - Use model to predict output value for new predictor values
- Example
 - Predictors: mother height, father height, current age
 - Output: height

Classification

Using data to build models and make predictions

- Supervised
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value "label"
- Model is method from feature values to label
 - Use model to predict label for new feature values
- Example
 - Feature values: age, gender, income, profession
 - Label: buyer, non-buyer

Other Examples

Medical diagnosis

- Feature values: age, gender, history, symptom1-severity, symptom2-severity, test-result1, test-result2
- Label: disease

Email spam detection

- Feature values: sender-domain, length, #images, keyword₁, keyword₂, ..., keyword_n
- Label: spam or not-spam

Credit card fraud detection

- Feature values: user, location, item, price
- Label: fraud or okay

Algorithms for Classification

Despite similarity of problem statement to regression, non-numerical nature of classification leads to completely different approaches

CS102

- K-nearest neighbors
- Decision trees
- Naïve Bayes
- Deep neural networks
- ... and others

Classification

K-Nearest Neighbors (KNN)

For any pair of data items i_1 and i_2 , from their feature values compute $distance(i_1, i_2)$

Example:

Features - gender, profession, age, income, postal-code

 $person_1 = (male, teacher, 47, $25K, 94305)$

person₂ = (female, teacher, 43, \$28K, 94309)

distance(person₁, person₂)

distance() can be defined as inverse of similarity()

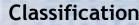
CS102

Classification

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) person₂ = (female, teacher, 43, \$28K, 94309)

Remember training data has labels



1000011101110000111011

K-Nearest Neighbors (KNN)

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item *i* : In the labeled data find the K closest items to *i*, assign most frequent label

 $person_3 = (female, doctor, 40, $40K, 95123)$

KNN Example

- City temperatures France and Germany
- Features: longitude, latitude
- Distance is Euclidean distance distance([o₁,a₁],[o₂,a₂]) = sqrt((o₁-o₂)² + (a₁-a₂)²) = actual distance in x-y plane
- Labels: frigid, cold, cool, warm, hot

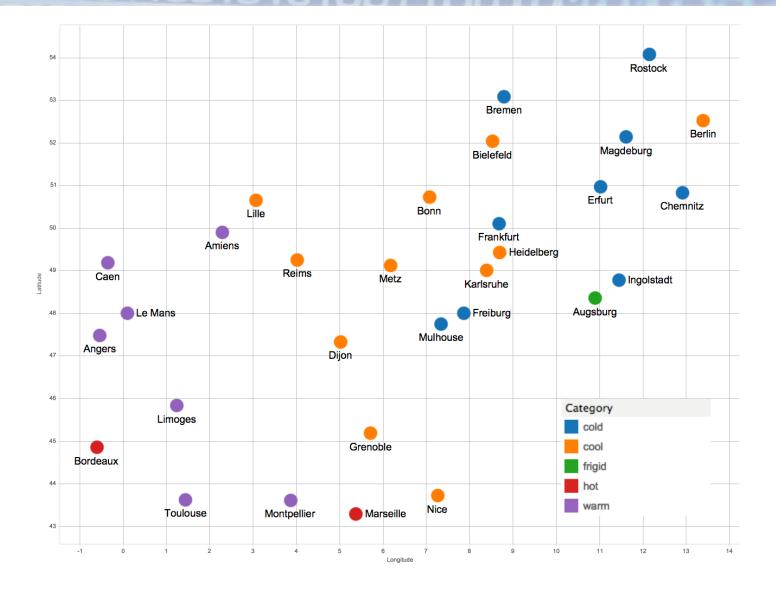
Nice (7.27, 43.72) cool Toulouse (1.45, 43.62) warm Frankfurt (8.68, 50.1) cold

Predict temperature category from longitude and latitude

Classification

CS102

KNN Example



Classification

CS102

KNN Summary

To classify a new item *i*: find K closest items to *i* in the labeled data, assign most frequent label

- No hidden complicated math!
- Once distance function is defined, rest is easy
- Though not necessarily efficient Real examples often have thousands of features
 - Medical diagnosis: symptoms (yes/no), test results
 - Email spam detection: words (frequency)

Database of labeled items might be enormous

"Regression" Using KNN

Features - gender, profession, age, income, postal-code person₁ = (male, teacher, 47, \$25K, 94305) buyer person₂ = (female, teacher, 43, \$28K, 94309) non-buyer

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign most frequent label

 $person_3 = (female, doctor, 40, $40K, 95123)$

"Regression" Using KNN

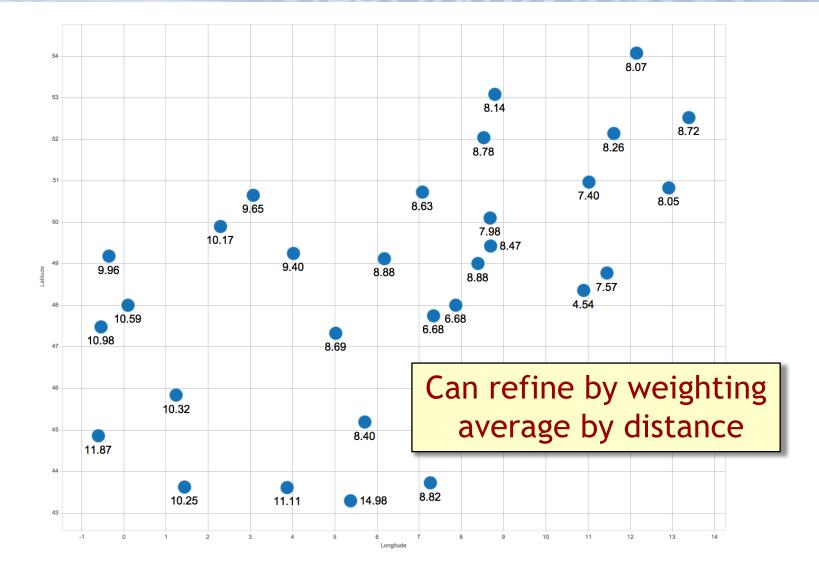
Features - gender, profession, age, income, postal-code
person₁ = (male, teacher, 47, \$25K, 94305) \$250
person₂ = (female, teacher, 43, \$28K, 94309) \$100

Remember training data has labels

To classify a new item *i*, find K closest items to *i* in the labeled data, assign average value of labels

 $person_3 = (female, doctor, 40, $40K, 95123)$

Regression Using KNN - Example



Classification

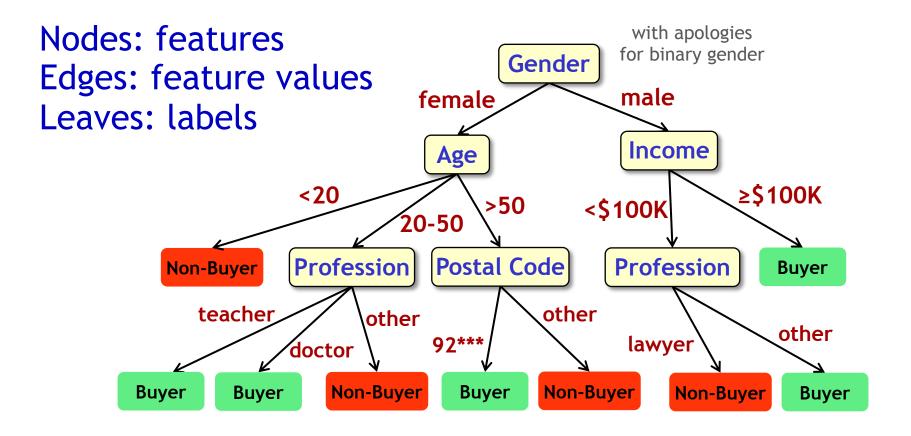
CS102

Decision Trees

- Use the training data to construct a decision tree
- Use the decision tree to classify new data

1000011101110000111011

Decision Trees



New data item to classify: Navigate tree based on feature values

Decision Trees

Primary challenge is building good decision trees from training data

- Which features and feature values to use at each choice point
- HUGE number of possible trees even with small number of features and values

Common approach: "forest" of many trees, combine the results

• Still impossible to consider all trees

Naïve Bayes

Given new data item *i*, based on *i*'s feature values and the training data, compute the probability of each possible label. Pick highest one.

Efficiency relies on conditional independence assumption:

Given any two features F_1 , F_2 and a label L, the probability that $F_1=v_1$ for an item with label L is independent of the probability that $F_2=v_2$ for that item

Examples:

gender and age? income and postal code?

Naïve Bayes

Given new data item *i*, based on *i*'s feature values and the training data, compute the probability of each possible label. Pick highest one.

Efficiency relies on conditional independence assumption:

Conditional independence assumption often doesn't hold, which is why the approach is "naive" del L, the h label L is 2=V2 for that

Examples: gender and age? income and Nevertheless the approach works very well in practice

Classification

Naive Bayes Example

Predict temperature category for a country based on whether the country has coastline and whether it is in the EU

country	coastline	EU	tempAvg	category
Albania	yes	no	15.18	hot
Andorra	no	no	9.60	warm
Belarus	no	no	5.95	cool
Belgium	yes	yes	9.65	warm
Bosnia and Herzego	no	no	9.60	warm
Bulgaria	yes	yes	10.44	warm
Croatia	yes	yes	10.87	warm
Czech Republic	no	yes	7.86	cool
Denmark	yes	yes	7.63	cool
Estonia	yes	yes	4.59	cold
Finland	yes	yes	3.49	cold
Germany	yes	yes	7.87	cool
Greece	yes	yes	16.90	hot
Hungary	no	yes	9.60	warm
Ireland	Ves	Ves	Q 30	warm

Classification

Naive Bayes Preparation

Step 1: Compute fraction (probability) of items in each category

cold	.18
cool	.38
warm	.24
hot	.20

Naive Bayes Preparation

Step 2: For each category, compute fraction of items in that category for each feature and value

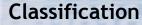
	coastline=yes	.83		coastline=yes	.5
cold	coastline=no	.17	warm	coastline=no	.5
(.18)	EU=yes	.67	(.24)	EU=yes	.5
	EU=no	.33		EU=no	.5
	coastline=yes	.69		coastline=yes	1.0
cool	coastline=no	.31	hot	coastline=no	.0
(.38)	EU=yes	-yes .77 (.20)		EU=yes	.71
	EU=no	.23		EU=no	.29

Classification

CS102

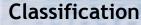
New item: France, coastline=yes, EU=yes

category	prob.	coastline=yes	EU=yes	product
cold	.18	.83	.67	.10
cool	.38	.69	.77	.20
warm	.24	.5	.5	.06
hot	.20	1.0	.71	.14



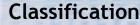
New item: France, coastline=yes, EU=yes

category	prob.	coastline=yes	EU=yes	product
cold	.18	.83	.67	.10
cool	.38	.69	.77	.20
warm	.24	.5	.5	.06
hot	.20	1.0	.71	.14



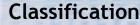
New item: Serbia, coastline=no, EU=no

category	prob.	coastline=no	EU=no	product
cold	.18	.17	.33	.01
cool	.38	.31	.23	.03
warm	.24	.5	.5	.06
hot	.20	.0	.29	.00



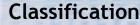
New item: Serbia, coastline=no, EU=no

category	prob.	coastline=no	EU=no	product
cold	.18	.17	.33	.01
cool	.38	.31	.23	.03
warm	.24	.5	.5	.06
hot	.20	.0	.29	.00



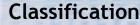
New item: Austria, coastline=no, EU=yes

category	prob.	coastline=no	EU=yes	product
cold	.18	.17	.67	.02
cool	.38	.31	.77	.09
warm	.24	.5	.5	.06
hot	.20	.0	.71	.0



New item: Austria, coastline=no, EU=yes

category	prob.	coastline=no	EU=yes	product
cold	.18	.17	.67	.02
cool	.38	.31	.77	.09
warm	.24	.5	.5	.06
hot	.20	.0	.71	.0



New item: Austria, coastline=no, EU=yes

Fc	or e	Many presentations of Naïve Bayes						
pr	od	include an additional normalization						
in	th	-		inal products				
r		-		that sum to 1				
	ca	choice of label is unchanged, so we've u						
		omitted that step for simplicity.						
	cool .38 .31 .77 .0				.09			
	warm .24			.5	.5	.06		
	hot		.20	.0	.71	.0		

Classification

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

Sometimes useful features are hidden or missing

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

- Feature selection select subset of features that are independent and predictive
- Dimensionality reduction combine multiple features into one value

Replace [salary,bonus,options] with income Replace [passes,minutes] with passes-per-minute

Sometimes useful features are hidden or missing

Feature Management

Real applications often have thousands of features, too many for classification algorithms to handle well

Sometimes useful features are hidden or missing

• Feature engineering - add features from other data or domain knowledge

distance-from-coast, elevation (for temperature) average player temperament (for yellow and red cards) product ratings from review site

Deep Neural Networks

Neural Networks

- Machine learning method modeled loosely after connected neurons in brain
- Invented decades ago but not successful
- Recent resurgence enabled by:
 - Powerful computing that allows for many layers (making the network "deep")
 - Massive data for effective training

Deep Neural Networks

= Deep Learning

- Huge breakthrough in effectiveness and reach of machine learning
- Accurate predictions across many domains
- Big plus: Automatically identifies features in unstructured data (e.g., images, videos, text)

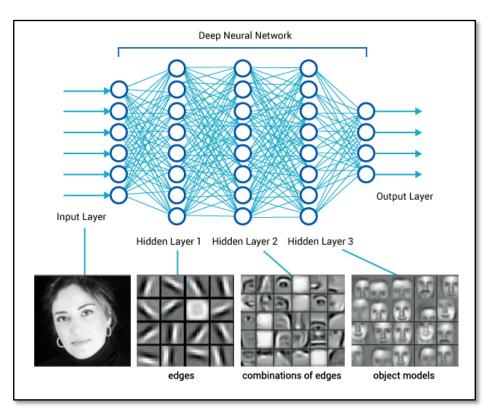
Deep Neural Networks

General idea

- Multiple layers, each layer transforms inputs to provide new features or structures for next layer
- Iterate on training data, checking accuracy and improving network

Reality

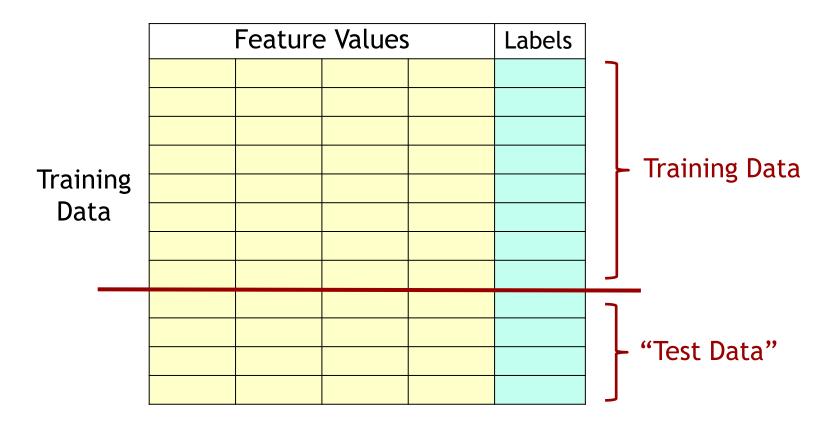
- Complex and mysterious, often used without full understanding
- Results not "explainable"



Classification

Training and Test

Created machine learning model from training data. How do you know whether it's a good model? ≻ Try it on known data



Classification

CS102

Confusion Matrix

Full information about results on test data

cold cool hot warm 12 5 2 cold 0 Accuracy Actual 8 69 12 3 cool .718 2 16 57 5 warm 15 1 9 hot 1

Prediction

- Basic accuracy = % correct = Σ(diagonal) / total
- When numbers or ordinal categories, can also incorporate distance

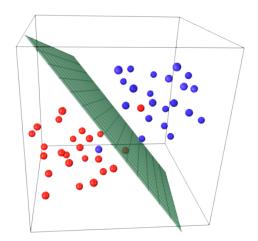
Other Methods You Might Come Across

Logistic Regression

- Typically for two labels only ("binary classifier")
- Recall regression model is function *f* from predictor values to numeric output value
- Labels L₁ + L₂, from training data obtain function:
 f(feature-values) = probability of item having label L₁

Support Vector Machine

- Also for binary classification
- Features = multidimensional space
- From training data SVM finds hyper-plane that best divides space according to labels



Classification Summary

- Supervised machine learning
- Training data, each example:
 - Set of feature values numeric or categorical
 - Categorical output value label
- Model is "function" from feature values to label
 - Use model to predict label for new feature values

Classification Summary

Approaches we covered

- K-nearest neighbors relies on distance (or similarity) function
- Decision trees

relies on finding good trees/forests

• Naïve Bayes

relies on conditional independence assumption

• Deep neural networks

relies on large data sets and powerful computing

Classification

CS102