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Data is Everywhere

= Explosion in data-driven scientific discovery,
business practices, medicine, education,
politics, societal interventions, ...

= And it’s just the beginning

» Ability to collect data across many domains will
continue to accelerate

» Data analysis techniques will continue to improve

“Data is the oil of the 21st century”
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Data is Everywhere

= Explosion in data-driven scientific discovery,
business practices, medicine, education,
politics, societal interventions, ...

= And it’s just the beginning

» Ability to collect data across many domains will
continue to accelerate

» Data analysis techniques will continue to improve

“Data is the oil fuel of the 21st century”
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The Two Steps of Working with Data

(1) Collect data
Via computers, sensors, people, events, ...

(2) Do something with it

Make decisions, confirm hypotheses,
gain insights, predict future, ...

“Data Science” = Going from (1) to (2)

Overview CS102



Overview

This Overview

Promises of working with data
Applications and services

Data tools and techniques
Database management systems
Data mining and machine learning

Pitfalls in working with data
Correlation and causation
Underfitting and overfitting
Privacy and a few others

Data systems and platforms
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Promises of Working with Data

(1) Collect data

(2) Do somethingxith it

beneficial
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Recommender Systems
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(2) Do something with it
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Remember, the other team is data gave the German
counting on Big Data insights based |
on previous games. So, kick teamaleg up
Saheli Roy Choudhury | @sahelirc

the ball with your other foot.” Thursday, 7 Ju 2016 1239 AM ET
cnBC

football

How Big Data is Changing the World of
Football
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(2) Do something with it

44 000 sensors, over 2 billion measurements
Physical, chemical, biological ...
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Genetics-Medicine Relationships

PharmGKB collects, curates, and disseminates
knowledge about how human genetics affects
response to medicines
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And Many More

= Weather prediction

= Medical diagnosis

* Financial markets

= Resource management

= Computational social science
= Smart buildings and cities

The list goes on and on,
and it’s still early days
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Data Tools and Techniques

= Basic Data Manipulation and Analysis

Performing well-defined computations or asking
well-defined questions (“queries”)

= Data Mining
Looking for patterns in data

* Machine Learning
Using data to build models and make predictions

= Data Visualization
Graphical depiction of data

= Data Collection and Preparation

Overview CS102



Basic Data Manipulation and Analysis

Overview

Performing well-defined computations or
asking well-defined questions (“queries”)

Average January low temperature for each
country over last 20 years

Number of items over $100 bought by
females between ages 20 and 30

Frequency of specific medicine relieving
specific symptoms

The ten stocks whose price varied the most
over the past year

CS102



Basic Data Manipulation and Analysis

Performing well-defined computations or

as

= Ave
cou

= Nui
fen

« Spreadsheets

» Relational (SQL) database systems
« “NoSQL” / scalable systems

* Programming languages with

= Fre

data support (e.g., Python, R)

specific symptoms

King well-defined questions (“queries”)

h

= The ten stocks whose price varied the most
over the past year

Overview
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Overview

Data Mining

Looking for patterns in data

ltems X,Y,Z are bought together frequently
People who like movie X also like movie Y

Patients who respond well to medicines X
and Y also respond well to medicine Z

Students going to the same university are
frequently online friends

Wealthier people are moving from cities to
suburbs

CS102



Overview

Data Mining

Looking for patterns in data

ltems X,Y,Z are bought together frequently
ie Y

People , Frequent item-sets

Patien|« Association rules es X

and Y |, specialized techniques for
Studerl networks, text, multimedia [are

frequently online friends

Wealthier people are moving from cities to
suburbs
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Machine Learning

Using data to build models and make predictions

= Customers who are women over age 20 are
likely to respond to an advertisement

= Students with good grades are predicted to do
well on the SAT

* The temperature of a city can be estimated as
the average of its nearby cities, unless some of
the cities are on the coast or in the mountains

Overview CS102



Machine Learning

Using data to build models and make predictions

= Customers R . bver age 20 are
. e Regression )
likely to re 7 rtisement
 Classification .
= Students w re predicted to do

e Clustering

well on the

Roughly: Basic data analysis and data mining
give answers from the available data, while
machine learning uses the available data to
make predictions about missing or future data

Overview CS102



Data Visualization

“A picture is worth a thousand words”

Overview CS102



Data Visualization

“A picture is worth a thoeusand-words”
trillion data points

Overview CS102



Early Data Visualization
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Basic Data Visualization

Don’t underestimate the power of basic visualizations

= Bar charts

= Pie charts

= Scatterplots *| .:i&"

. A [ ]
= Maps ot
p . . -...Q...} J
0. LS °
S @
o
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Data Collection and Preparation

The “dirty” secret of working with data

= Extracting data from difficult sources
» Filling in missing values
= Removing suspicious data
= Making formats, encoding, and units consistent
= De-duplicating and matching
Data preparation often

consumes 80% or more of the
effort in a data-driven project
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Pitfalls of Working With Data

(1) Collect data

(2) Do somethingﬁwith it

correct
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Correlation and Causation

Data analysis, data mining, and machine learning
can reveal relationships between data values

Correlation - Values track each other

* Height and Shoe Size
* Grades and SAT Scores

Causation - One value directly influences another

* Education Level - Starting Salary
 Temperature - Cold Drink Sales

Overview CS102



Correlation and Causation

“Correlation does not imply causation”

Correlation - Values track each other

* Height and Shoe Size
* Grades and SAT Scores

Causation - One value directly influences another

* Education Level - Starting Salary
 Temperature - Cold Drink Sales
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Correlation and Causation

“Correlation does not imply causation”

= Correlation can be result of causation from a
hidden “confounding variable”

= A and B are correlated because there’s a
hidden C suchthat C > Aand C > B

** Homeless population and crime rate
Confounding variable: unemployment

¢ Forgetfulness and poor eyesight
Confounding variable: age

¢ Height and shoe size
+¢» Grades and SAT scores

Overview CS102



Correlation and Causation

“Correlation does not imply causation”

= Correlation can be result of causation from a
hidden “confounding variable”

= A and B are correlated because there’s a
hidden C suchthat C > Aand C > B

= Correlation is usually “easy” to test
= Causation is typically impossible to test
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Correlation and Causation

TOBACCO
INDUSTRY
RESEARCH

CENTRE

“I wish they didn’t turn on that

seatbelt Sign so much! Every Excellent health statistics - smokers are less
time they do, it gets bumpy.” likely to die of age related ilinesses.'
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Surprising Correlation #1

US crude oil imports from Norway
correlates with

Drivers killed in collision with railway train

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
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2

o

Z 3

g s

§100 million barrels 80 deaths o

= <
ot

& g

o =]

E 3

— 50 million barrels 60 deaths =

o 73

o) o

el

E 2

o

%)

= 0 million barrels 40 deaths

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Railway train collisions¢- US crude oil imports from Norway

Overview CS102



60 Launches

=

50 Launches

40 Launches

30 Launches

Worldwide non-commercial space launches
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1997

Surprising Correlation #2

1998

Worldwide non-commercial space launches
correlates with

Sociology doctorates awarded (US)

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008

-®- Sociology doctorates awarded (U9 Worldwide non-commercial space launches

2009

2009

700 Degrees awarde
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Surprising Correlation #3

Per capita cheese consumption
correlates with

Number of people who died by becoming tangled in their bedsheets

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009
331bs - 800 deaths .
z ¢ e @
£ &
2 600 death g
g 31.51bs eaths o
i g
@
g &
] =y
S 30lbs 400 deaths§
28.51bs 200 deaths
2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Bedsheet tanglings-¢- Cheese consumed
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“Spurious Correlations” Website

http://www.tylervigen.com/
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Underfitting and Overfitting

Machine learning uses data to create a “model”
and uses model to make predictions

= Customers who are women over age 20 are
likely to respond to an advertisement

= Students with good grades are predicted to do
well on the SAT

* The temperature of a city can be estimated as
the average of its nearby cities, unless some of
the cities are on the coast or in the mountains

Overview CS102



Underfitting

Model used for predictions is too simplistic

= 60% of men and 70% of women responded to an
advertisement, therefore all future ads should
go to women

= |f a furniture item has four legs and a flat top it
is a dining room table

* The temperature of a city can be estimated as
the average of its nearby cities

Overview CS102



Overfitting

Model used for predictions is too specific

= The best targets for an advertisement are
married women between 25 and 27 years with
short black hair, one child, and one pet dog

= |[f a furniture item has four 100 cm legs with
decoration and a flat polished wooden top with
rounded edges then it is a dining room table

Overview CS102



Regression

= Fit a line or curve to a set of points (model)
» Use model to predict values for new points

140

3.54

University GPA

254 "

50 55 60 65 70 a1 % T - T T
H =) | g ht High School GPA
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Soccer Match Prediction Scam

* Friday: receive email from “Psychic Sally”
predicting which teams will be the winners in
the weekend’s five soccer matches. She’s right
about all of them!

= Same thing the following weekend: five games,
all winners predicted correctly

= And the following one: five more correct

= Fourth Friday: Sally offers to give you her
predictions for the coming weekend’s games,

for a fee
Should you do it?
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Soccer Match Prediction Scam

How many contacts must Sally start with on
week one to ensure she has 100 potential
buyers by week four, i.e., 100 people who

received 15 correct predicted winners?

(Assume no draws)
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Data Privacy

» |ndividual data collected covertly
« Edward Snowden, “metadata” argument

= |ndividual data collected legally but used
questionably

* Individual “information trails” are enormous
» Target stores pregnancy mailing

» |ndividual data deduced from “anonymous”
public data

* Governor of Massachusetts health record
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Languages, Systems, Platforms

= Spreadsheets

Surprisingly versatile and powerful for data
analysis tasks, provided data is not too large

* Programming languages with data support
* R Language - powerful statistical features

» Python - general-purpose language with R-like
add-ons (Pandas, SciPy, scikit-learn)

Overview CS102



Languages, Systems, Platforms

= Relational Database Management Systems

 Also called RDBMS, SQL Systems

 Long-standing solution for reliability, efficiency,
powerful query processing

» Works for all but truly extreme data sizes, or
highly unstructured data

= “NoSQL” Systems
* Distributed/scalable processing

* Some specifically target unstructured data
(documents, graphs)
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Languages, Systems, Platforms

= Specialized languages on scalable systems
* MapReduce / Hadoop
 Spark generalized data flow

= Systems for data preparation

= Systems for data visualization

Overview CS102



Languages, Systems, Platforms

= Data processing in the cloud

 Amazon Web Services, Google Cloud,
Microsoft Azure

» Data storage

» Data processing: SQL, Hadoop, Spark
* Machine learning libraries

* Integration with visualization systems

Overview CS102



How Much Data is There?

Complete works of William Shakespeare
5 megabytes

Average individual
50 gigabytes (10,000 Shakespeares)

USA Library of Congress
10 terabytes (2 million Shakespeares)

Uploaded to Facebook daily
1 petabyte (200 million Shakespeares)

Produced by humanity daily
2.5 exabytes (500 trillion Shakespeares)
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“Big Data”

Some domains produce vast quantities of data,
and some analyses require “big data” to be
effective

» Most tools and techniques apply to data of all sizes
» Big insights can come from small/medium data

Sometimes twenty Spark servers
in the cloud are required.
More often a laptop with SQL, Python,
or simple spreadsheets does the job.
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Working with Data - Overview

Questions?




